#![cfg_attr(feature = "cargo-clippy", allow(many_single_char_names, ptr_arg))] // This is an implementation of the Sutherland-Hodgman (1974) reentrant polygon // clipping algorithm. It takes a polygon represented as a number of vertices // and cuts it according to the given planes. // The implementation borrows heavily from Pucella-Tov (2008). See that paper // for more explanation. extern crate rand; extern crate session_types; use session_types::*; use rand::distributions::{Distribution, Standard}; use rand::{random, Rng}; use std::thread::spawn; #[derive(Debug, Copy, Clone)] struct Point(f64, f64, f64); impl Distribution for Standard { fn sample(&self, rng: &mut R) -> Point { Point(rng.gen(), rng.gen(), rng.gen()) } } #[derive(Debug, Copy, Clone)] struct Plane(f64, f64, f64, f64); impl Distribution for Standard { fn sample(&self, rng: &mut R) -> Plane { Plane(rng.gen(), rng.gen(), rng.gen(), rng.gen()) } } fn above(Point(x, y, z): Point, Plane(a, b, c, d): Plane) -> bool { (a * x + b * y + c * z + d) / (a * a + b * b + c * c).sqrt() > 0.0 } fn intersect(p1: Point, p2: Point, plane: Plane) -> Option { let Point(x1, y1, z1) = p1; let Point(x2, y2, z2) = p2; let Plane(a, b, c, d) = plane; if above(p1, plane) == above(p2, plane) { None } else { let t = (a * x1 + b * y1 + c * z1 + d) / (a * (x1 - x2) + b * (y1 - y2) + c * (z1 - z2)); let x = x1 + (x2 - x1) * t; let y = y1 + (y2 - y1) * t; let z = z1 + (z2 - z1) * t; Some(Point(x, y, z)) } } type SendList = Rec>>>; type RecvList = Rec>>>; fn sendlist(c: Chan<(), SendList>, xs: &Vec) { let mut c = c.enter(); for x in xs { let c1 = c.sel2().send(*x); c = c1.zero(); } c.sel1().close(); } fn recvlist(c: Chan<(), RecvList>) -> Vec { let mut v = Vec::new(); let mut c = c.enter(); loop { c = match c.offer() { Left(c) => { c.close(); break; } Right(c) => { let (c, x) = c.recv(); v.push(x); c.zero() } } } v } fn clipper(plane: Plane, ic: Chan<(), RecvList>, oc: Chan<(), SendList>) { let mut oc = oc.enter(); let mut ic = ic.enter(); let (pt0, mut pt); match ic.offer() { Left(c) => { c.close(); oc.sel1().close(); return; } Right(c) => { let (c, ptz) = c.recv(); ic = c.zero(); pt0 = ptz; pt = ptz; } } loop { if above(pt, plane) { oc = oc.sel2().send(pt).zero(); } ic = match ic.offer() { Left(c) => { if let Some(pt) = intersect(pt, pt0, plane) { oc = oc.sel2().send(pt).zero(); } c.close(); oc.sel1().close(); break; } Right(ic) => { let (ic, pt2) = ic.recv(); if let Some(pt) = intersect(pt, pt2, plane) { oc = oc.sel2().send(pt).zero(); } pt = pt2; ic.zero() } } } } fn clipmany(planes: Vec, points: Vec) -> Vec { let (tx, rx) = session_channel(); spawn(move || sendlist(tx, &points)); let mut rx = rx; for plane in planes { let (tx2, rx2) = session_channel(); spawn(move || clipper(plane, rx, tx2)); rx = rx2; } recvlist(rx) } fn normalize_point(Point(a, b, c): Point) -> Point { Point(10.0 * (a - 0.5), 10.0 * (b - 0.5), 10.0 * (c - 0.5)) } fn normalize_plane(Plane(a, b, c, d): Plane) -> Plane { Plane( 10.0 * (a - 0.5), 10.0 * (b - 0.5), 10.0 * (c - 0.5), 10.0 * (d - 0.5), ) } fn bench(n: usize, m: usize) { let points = (0..n).map(|_| random()).map(normalize_point).collect(); let planes = (0..m).map(|_| random()).map(normalize_plane).collect(); let points = clipmany(planes, points); println!("{}", points.len()); } fn main() { bench(100, 5); }